Biomarker of DMR 서울대학교 의과대학 안과학 교실 유 형 곤

Diabetic Retinopathy

- Most common microvascular complication
- One of the leading causes of blindness
- Association with systemic vascular complications
 - CVA, coronary heart disease, heart failure, nephropathy

Role of Biomarker in DMR

- General role of biomarker
 - Decision in therapy
 - Prognosis of disease
- Role of biomarker in DMR
 - Grading of DMR
 - Decision of laser photocoagulation
 - Prognosis of DMR

Biomarkers in DMR

- Fundoscopic and Angiographic biomarker
- Genetic biomarker
- Plasma biomarker
- Vitreous biomarker
- Proteomic approach for biomarker discovery

Microaneurysm

Microaneurysm

- Saccular outpouching of capillary wall
- The first visible sign of DR
- Staging biomarker as combined with punctate hemorrhage
- Leakage from Ma as a cause of macular edema
- Ma turnover as a biomarker for CSME

IRMA

IRMA

(IntraRetinal microvascular Abnormality)

- Clusters of Ma and tortuous hypercellular vessels
- Adjacent to the nonperfused retina
- 70% of NVE from IRMA
- As a biomarker for progression to PDR

Venous beading

Venous beading

- Dilated segments of retinal veins
- Representative of retinal ischemia
- Biomarker most associated with progression to PDR

Hard exudate

Hard exudate

- Lipid deposits in association with lipoprotein leakage
- Often accompanied with macular edema
- Associated with serum lipids level
- Not as a biomarker for progression to PDR

Cotton wool patch

50° Left #2

Cotton wool patch

- Defect in axonal transport from microinfarcts in the retinal nerve fiber layer
- Not as a biomarker for progression of DR

PDR

PDR

- PDR, accompanying
 - Neovascularization: NVD, NVE
 - Fibrous proliferation
- NVD (New Vessels on Disc)
 - Biomarker most associated with severe visual loss

Neovascularization

Macular edema

Macular edema

- Retinal thickening from accumulation of fluid within 1 DD of the macula
- Most common cause of visual loss in DR
- CSME (Clinically Significant Macular Edema)
 - Macular edema involving or threatening fovea

Grading of DMR

Severity	Lesions present
Mild NPDR	Ma +/- retinal hemorrhage, hard exudates
Moderate NPDR	Mild NPDR + cotton wool spots and/or IRMA
Severe NPDR	Presence of one of the following features 1)H/Ma≥ standard photograph 2A in 4 Q 2)marked venous beading in 2 Q 3)moderate IRMA in 1 Q
Very severe NPDR	\geq 2 of the above features in severe NPDR

Prognosis of DMR

Grading	Follow-up	Severe visual loss (%)
NPDR	2-year	3.2
	4-year	12.8
PDR without high ris k markers	2-year	7.0
	4-year	20.9
PDR with high risk markers	2-year	26.2
	4-year	44.0
All eyes	2-year	14.0
	4-year	28.5

Treatment of DR

- Diabetic Control
- Laser photocoagulation
 - Considered over very severe NPDR
 - Focal/grid photocoagulation
 - Macular edema
- Medication
 - Antiplatelet
 - Lipid lowering agents
 - Antioxidants

Biomarkers in DMR

- Fundoscopic and Angiographic biomarker
- Genetic biomarker
- Plasma biomarker
- Vitreous biomarker
- Proteomic approach for biomarker discovery

Aldose Reductase 2 Gene

- Aldose Reductase 2
 - 1st and rate limiting enzyme in polyol pathway
- (A–C)n repeat polymorphism
 - found to be associated with DR in
 - Hong Kong-Chineses, Japaneses, Indians, Chinese
- (AC)23 allele in ALR2-gene
 - associated with early onset of DR
 - Rapid progression of DR

AGE Receptor (RAGE) gene

- Receptor-mediated activation and secretion of various cytokines
 - Progression of DR
- Gly82 Ser polymorphism
 - Decreased RAGE expression
 - lower risk for development of DR
 - Pros: Kumaramanickavel et al., Hudson et al.
 - Cons: JiXiong et al., Kankova et al., Liu and Xiang, Petrovic et al.

Renin-angiotensinogen system

ATR1 gene

- Angiotensin II Type 1 Receptor
- ATR1 polymorphisms
 - No association with the development of retinopathy in type 2 diabetes

RAS (cont'd)

- ACE gene
 - ACE I/D (insertion/deletion) polymorphism
 - Association with DR
 - demonstrated only in one study performed with Japanese
- Angiotensinogen gene
 - No association with DR
 - Chinese, Caucasians

VEGF gene

- C(-634)G polymorphism
 - ∘ -634C allele
 - Increased in DR patients
 - CC genotype
 - Higher VEGF serum levels in healthy subjects

MTHFR gene

- Methylenetetrahydrofolate reductase
 Remethylation of homocysteine to methionine
 Hyperhomocysteinemia
 independent risk factor for macroangiopathy
 Activation of vascular inflammation through inflammatory cytokines, including VEGF
 Polymorphic mutation (C677T)
 - Impaired enzyme activity, resulting in hyperhomocysteinemia
 - *can contribute to the progression of DMR

Other Genes

 TNF-α, nitrate oxidase gene, GLUT1, PAI-1, PON-1 (paroxonase-1), HFE (hemochromatosis), TGF β1, EDN1 (Endothelin-1), PPARγ, or α2β1 integrin, matrix metalloproteinase, basic fibroblast growth factor gene, manganese superoxide dismutase gene, SUMO4 gene, IGF-1 gene, PEDF

Biomarkers in DMR

- Fundoscopic and Angiographic biomarker
- Genetic biomarker
- » Plasma biomarker
- Vitreous biomarker
- Proteomic approach for biomarker discovery

Candidate Plasma Biomarker

- Risk markers of
 - inflammation
 - Hemostatic disturbance
 - endothelial dysfunction
 - Hyperhomocyeteinemia
- Current plasma risk factors of DR
 - Inconsistent
 - limited clinical use

the Hoorn Study

- 625 individuals aged 50 to 74 years
- Levels of CRP, soluble intercellular adhesion molecule-1 (sICAM-1), von Willebrand factor, soluble vascular adhesion molecule-1 (sVCAM-1), urinary albumin : creatinine (ACR)
- investigated the association of the markers with prevalent retinopathy

Prevalence of retinopathy according to tertiles of CRP, sICAM-1,vWf, sVCAM-1 and ACR

Wisconsin Epidemiologic Study of Diabetic Retinopathy

- type 1 DM
- hsCRP, IL-6, sVCAM-1, sICAM-1, TNF, total homocysteine
- Prevalence data
 - sVCAM, TNF, and homocysteine levels were associated with increased odds of more severe DR in those with kidney disease
 - total homocysteine level was associated with increased odds of ME, irrespective of kidney disease.
- Incidence data
 - None of the markers were associated with incidence of proliferative DR, ME, or progression of DR 15 years later.

Multi-Ethnic Study of Atherosclerosis

- 921 patients with DM
- established risk factors
 - diabetes duration, HbA1C, systolic blood pressure, waistto-hip ratio, use of diabetes medications
- novel markers
 - C-reactive protein, homocysteine, fibrinogen, plasminalpha(2)-antiplasmin complex (PAP), interleukin-6, d-dimer, factor VIII, serum creatinine, and urinary albumin-tocreatinine (UAC) ratio
 - After adjusting for established risk factors
 - Fibrinogen and PAP were associated with any DR
 - PAP & homocysteine were associated with visionthreatening DR

Nguyen et al. Diabetes Care 2009

Multi-Ethnic Study of Atherosclerosis

- Area under receiver-operator characteristic curve (AUC) for DR for established and novel risk factors
 - Established risk factors accounted for a 39.2% increase of the AUC, whereas novel markers only accounted for an additional 2.2%.

suggest that there is limited clinical use of these biomarkers for prediction of diabetic retinopathy

Nguyen et al. Diabetes Care 2009

Biomarkers in DMR

- Fundoscopic and Angiographic biomarker
- Genetic biomarker
- Plasma biomarker
- » Vitreous biomarker
- Proteomic approach for biomarker discovery

Changes in vitreous proteins

- Significant changes in diabetic retinopathy
 - VEGF, SDF-1, HGF, IGF-1, IGF-2, angiogenin, angiopoietin, angiotensin II, endothelin-1, erythropoietin, PEDF, angiostatin, endostatin

Aiello et al. NEJM 1994

Vitreous inflammatory factors and DME

- Vitreous fluid levels of VEGF, ICAM-1, IL-6, and MCP-1 were significantly higher in patients with DME than in nondiabetic patients or diabetic patients without retinopathy.
- In contrast, the PEDF level was significantly lower in patients with DME than in nondiabetic patients or diabetic patients without retinopathy

	DME	Non-DM	Non-DR
VEGF (pg/ml)	1086.4 (15.6–3450.0)	20.4 (15.6-69.6)*	35.6 (15.6–86.4) [†]
ICAM-1 (ng/ml)	18.6 (5.84–52.6)	6.44 (5.00-16.2)*	8.42 (5.00-18.4) [†]
IL-6 (pg/ml)	192.4 (18.0-823.4.)	8.74 (4.00-23.2)*	18.8 (4.00-66.4) [†]
MCP-1 (pg/ml)	1764.4 (176.4-3298.6)	426.3 (116.4-1128.6)*	678.4 (143.8-1654.2)*
PEDF (ng/ml)	3.20 (1.95–18.8)	23.4 (7.84–56.3)*	24.6 (16.6–39.3)†
		Funatsu et al. Ophthalmology 2009	

Vitreous Proteome profiling

- one-dimensional SDS-PAGE and nano-LC/MS/MS
- 17 independent vitreous samples
 - 252 proteins from human vitreous were identified.
 - 56 proteins were differentially abundant in no DR and PDR vitreous compared with no DM vitreous
 - PDR vs no DR
 - increased levels of angiotensinogen
 - decreased levels of calsyntenin-1, interphotoreceptor retinoid-binding protein, and neuroserpin.
 - PDR vs no DM
 - Increased complement C3, complement factor I, prothrombin, alpha-1-antitrypsin, and antithrombin III

Gao et al. J Proteome Res 2008

Biomarkers in DMR

- Fundoscopic and Angiographic biomarker
- Genetic biomarker
- Plasma biomarker
- Vitreous biomarker

Proteomic approach for biomarker discovery

Proteome Analysis

Proteome

PROTEin expressed by a genOME

Proteomics

 같은 genome을 지닌 생명체의 특정한 생리적인 조건하에서 존재하는 전체 단백질을 대상으로 종류, 분포, 존재량, 성질, 상호 연결망 및 기능 등을 체계적으로 총체적 수준에서 연구하는 기법

▶ Proteomics 분석 방법의 장점

- 대량 분석 : 수십 ~ 수천개 단백질 동시 분석
- 항체 없이 동정 가능 : peptide sequencing 이용
- ☞ 새로운 biomarker 발굴에 유용

Vitreous Proteome of PDR

- Undiluted vitreous specimen
 15 active PDR & 15 macular hole
- Proteome analysis
 2D electrophoresis and mass spectrometry (MALDI-TOF)

 25 protein spots were identified in the 2D gel electrophoresis gels.
 8 proteins including PEDF, serine protease inhibitor, apolipoprotein A-IV precursor, and PGH2 d-isomerase were differentially expressed.

Kim et al. Curr Eye Res 2006.

Vitreous Proteome of PDR

- Undiluted pooled vitreous specimen^{A. LC-MALDI-MS/MS}
- from 14 active PDR & 11 macular hole patients.
- Proteome analysis
 - 1D SDS-PAGE, nano-LC, mass spectrometry (offline LC-MALDI-MS/MS & LTQ LC-ESI-MS/MS)
- 531 proteins were identified
 - 415 from PDR and 346 from nondiabetic control vitreous

B. LC-ESI-MS/MS

Kim et al. Proteomics. 2007

346

Identified proteins of complement cascade

Identified proteins of coagulation cascade & kallikrein-kinin system

Protein Quantification using multiple reaction monitoring (MRM)

Protein quantification from individual vitreous & plasma

Procedure for MRM

Verification of Vitreous & Plasma Biomarkers using Multiple reaction montoring (MRM)

- Subjects
 - * Vitreous & plasma
 - * NPDR with ME 15명, PDR 15명, non-diabetic Macular hole 19명
 - * plasma
 - * DM patients without DR 16명, non-diabetic control 16명
- Methods
 - Relative Quantification (12 proteins)
 - * multiple reaction monitoring (MRM) using triple quadrupole LC-MS/MS
 - 12 Target proteins
 - thyroxine binding globulin (TBG)
 - gamma-Glutamyl Hydrolase
 - Kallistatin
 - von Willebrand factor
 - Hepatocyte growth factor activator
 - Glyceraldehyde-3-phosphate
 Dehydrogenase (GAPDH)

- coagulation factor IX Precursor
- Myocilin
- Peroxiredoxin 2
- Haptoglobin
- Apolipoprotein B100
- PEDF

Kim et al. J Proteome Res 2009

ROC curves and interactive plots of MRM in PDR versus MH vitreous

ROC curves and interactive plots of MRM in NPDR versus MH plasma

Interactive plots and ROC curves of TBG in vitreous and plasma

Vitreous & Plasma Biomarker in DR – summary of our results

- Vitreous proteome profiling (Kim et al. Proteomics 2007)
 - Search for candidate biomarker of diabetic retinopathy
 - 531 vitreous proteins were identified
- Selection of candidate : 12 proteins
- Quantification of 12 proteins in vitreous & plasma (Kim et al. J Proteome Res 2009)
 - in patients with PDR, NPDR, and nondiabetic patients
 - Quantification using Multiple reaction monitoring (MRM)
 - Vitreous TBG, kallistatin, HGF activator, vWF, GAPDH
 : increased in NPDR & PDR compared to non-diabetic controls
 - Plasma TBG, GAPDH, kallistatin
 : increased in DR compared to non-diabetic controls
 - Plasma coagulation factor IX, haptoglobin, peroxiredoxin 2, vWF
 - : decreased in DR compared to non-diabetic controls

Conclusion

- Development of Biomarker for diabetic retinopathy
 - To identify susceptible individuals
 - For early diagnosis
 - To decide treatment methods
 - To predict treatment outcome
 - To predict visual prognosis
- Multimodal approach for development of biomarkers
 - Ophthalmic : fundoscopic, angiographic, and from ocular specimens
 - Genetic
 - Systemic factors including plasma protein

